Brief Introduction to R
(using R 3.0)

by Petr Smilauer

Introduction

R is a non-commercial, free-to-use software for data exploration and statistical analysis. More
precisely, it is a programming environment and its full and effective use requires at least
rudimentary knowledge of the S programming language that represent the core of the R software.

This tutorial explains only the basics of the R program environment and S language use that are
required to accomplish and understand the examples present in our book and to apply the same
(and similar) functions to your own data. If you need to know more — and you will, if you decide to
continue to work with R — | suggest that you start first with An Introduction to R, about 100 pages
long and downloadable from the R primary resource site (www.cran.r-project.org). As of August
2013, the document URL was this:

http://www.cran.r-project.org/doc/manuals/r-release/R-intro.pdf
Extensive overview of many of the additional, freely available tutorials can be found here:
http://www.cran.r-project.org/other-docs.html

To progress even further, you might also like to check the book W.N. Venables & B.D. Ripley (2002):
Modern Applied Statistics with S. Fourth Edition. Springer, which provides not only a detailed
treatment of the R (and commercial S-Plus) software, but also of many useful statistical methods
available in this program.

Installation

Because Canoco 5 is primarily a Windows software (and on other platforms it works only in the
Windows environment emulators), | discuss here the R installation only on the Windows platform.
There are, however, available installers for MacOS and various Linux flavours.

While you can install R from your own account even without administrator rights, | do not
recommend doing so in the case a separate administrative account exists on your computer. In such
case, the installer will likely fail in its attempt to create new R folder in the C:/Program Files folder.
So if you have an administrator account on your computer, install R and also the additional packages
(see below) from that account.

In the case there is just one account on your laptop or desktop computer?, this account is likely
blessed with administrative rights and you can safely proceed with the installation.

You need about 150 — 200 MB of free hard disc space to install and use R. You can download and
start the installer from the following URL:

http://www.cran.r-project.org/bin/windows/base/

The link to the installer is at the page top (it reads “Download R 3.0.1 for Windows” at the time this
tutorial is written), so you can click it, store the installer at your disc and ask for its execution. Your
operating system is (rightfully) wary of executing programs downloaded from web, so before
executing the installer, you will see a message like “The publisher of R-3.0.1-win.exe couldn’t be
verified. Are you sure you want to run the program?” Of course, if you do not agree, your brief
encounter with R is at its end ©. Otherwise, you must then select the installation language, agree to
displayed licence, and confirm installation folder, parts of the program to be installed and choose
further customisation of program starting options. | suggest you stick with offered defaults in all
these steps, essentially just pushing the Next button.

After you successfully installed R, you should start it (either using the “blue R” icon newly placed at
your computer desktop or using the Start / All Programs / R 3.x /R 3.x menu command) to install
additional packages. Packages are collections of specialised statistical functions and most of the R
strength lies in them — very few, most essential packages are installed by default, but additional ones
can be dynamically added and this is what you will do now to provide the functionality used in our
book examples.

From the main program menu, choose the Packages / Install package(s) command and first select
the server you want to use. Choose a server located in your (or nearby) country or — if this fails - use
the “Austria” choice, as this is the master server at Vienna Technical University. After a while (R is
connecting to chosen server and inquiring about available packages), a list of packages available for
installation appears. This is usually a shocking moment for novice users — the number of available
packages is huge and you might wonder whether there are really so many statistical methods in the
world. Although they probably are, the primary reason is the democratic (or shall | say anarchistic?)
approach to R software development. Anyway, your uneasy task is now to select just two package
from the list, namely multcomp and vegan. To select both at the same time, make sure you press the
Ctrl key on the keyboard, while selecting the second item with the mouse button. Click then the OK
button and the packages are downloaded and installed.

First Touches

| will not take you too far during your first session with R, but it is still a lot of new concepts to learn.
Although you have presumably already practised the opening of R software (while installing
additional packages, as described above), it is necessary to do it again ©. The easiest start is by
double-clicking the R icon from your desktop:

! This is how Windows are installed in most of its editions, except those aimed at the business environment.

2

[
LRGSR TUN]

If you do not find it there, you can start the R program from the Start / All Programs / R 3.x menu
(see preceding section).

R displays its window that looks similarly to this one:

IR RGui (64-bit) - [R Console] =

REile Edit View Misc Packages Windows Help - & =
EGERCREE |
R version 3.0.1 (2013-05-16) -- "Good Sport" I

Copyright (C) 2013 The R Foundation for Statistical Computing
Platform: x86 64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSCOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale
R is a collaborative project with many contributors.

Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

m

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'g()' to guit R.

[Previously saved workspace restored]

> |

4 [}

On the last line of the R Console window is a > character with a vertical text cursor. The > character
represents so called command prompt. In this way, R is telling you that it waits for your commands.
The S language (used by the R program) is a functional programming language with a relatively
simple grammar. Like most of the software that was originally written for Unix operating system, it
distinguishes lower- and upper-case letters, so that if you name one thing A and another one a, they
will be considered different. Similarly, if you know that the name of function fitting linear regression
models is Im, you cannot use it by typing LM or Lm.

Basically, your use of R consists of writing commands at the command prompt and exploring the text
or graphical output that R creates in response. There are two types of commands in R — expressions
and assignments. If you enter, as your command, an expression, it is evaluated (i.e. its value is
calculated) and the result is shown in the window and immediately forgotten. As an example, type
now following expression (you type only the bold red parts, the rest is shown to provide a context
for you) and press the Enter key:

> 2+3
[1] 5
>

The meaning of the “[1]” preceding the correct answer (i.e. 5) might be slightly confusing. It is
perhaps the right time to learn that R does not normally work with individual numbers, but with
their groups called vectors.? The result 5 is taken simply as a vector of length one (with one entry)
and if you ever create a longer vector (you will, soon), its output might not fit on a single line of the
window. R therefore puts the index of a starting entry for a particular output line into square
brackets, like it did here (all vectors start with index 1). If, say, 20 values fit on a single output line
and there would be more than 20 values printed’, the second line of output would start with [21].

You will now create your own vector (albeit shorter) and also try the second form of command, the
assignment. An assignment starts with the name of an object (which is called a variable), to which
you assign a value, then an assignment operator (<-) and finally an expression. R evaluates the
expression and if it succeeds (i.e. if you have not made a mistake in it), it takes its value and stores it
in the variable. Here is your command to type:

>y <-c¢c(1, 4.5, 3.2, 2.8)
>

From now on, | will always omit the trailing line with the new prompt. You will note that the value
assigned to Yy was not printed, but you will see soon how to do it. The assignment operator is formed
by two characters: a “less than” character < and “minus” character —, written one next to the other.
Otherwise, you can add as many space characters as you wish. In our example, the expression uses
(calls) a function, this one named c. R has hundreds” of functions and you will learn about few of
them in this tutorial. What all the functions share is how you use them: you type their name
(remember, R is case-sensitive), then left round bracket, followed by a list of parameters (separated
by comma character), and then right round bracket, closing the list. And then you press the Enter
key. The function c combines (concatenates) the values of its parameters, forming a vector, and
returns to you its value (which you store in the variable y).

To see what the function C has really done, simply type the variable name and press Enter:

>y
[1] 1.0 4.5 3.2 2.8

Here you go — all four entries of the vector y are printed. You can do more with them, however:

> mean(y)
[1] 2.875

Function mean calculated an average of the four values stored in y and printed its value. Suppose
you want to calculate so-called variation coefficient for your four important numbers. You can do so
using following commands:

>m<- mean(y); v <- var(y)
>m / sqrt(v)
[1] 1.989076

2 . .

More precisely, vector is a group of ordered values, all of the same type.
*| will use here the word printed in the sense of “displayed by R in the console window”.
* Or thousands, if you count those present in packages.

4

The first line contains actually two commands (two assignments), defining two new variables, m and
V (representing mean and variance of the y values). The commands are separated by a semicolon
character. The expression in the second line divides the mean by the variance, but the variance is
first square-rooted (using function sqrt), so R is actually dividing by standard deviation, as it should
when calculating the variation coefficient. The result of that expression is then printed.

While the above example gives you an impression that functions mean, var, and sqrt take one
parameter each, it is not quite so. In fact, they (and most other functions) have multiple parameters,
but some of them are facultative: they already have some default (implicit) values, which are used
when you do not specify the parameter in the function call. You can learn about all the parameters
the function mean accepts by looking at its documentation. To display it, you use (no surprise here, |
hope) another function, called help:

> help(mean)
starting httpd help server ... done

Following page (only a part is shown) is then displayed in your web browser:

mean {base} R Documentation A
Arithmetic Mean

Description

Generic function for the (trimmed) arithmetic mean.

Usage

mean (X, «..)
Default 53 method:
mean (X, trim = 0, na.rm = FALSE, ...}

Arguments

® An R object. Currently there are methods for numeric/logical vectors and date, date-time and time interval

objects. Complex vectors are allowed for trim = 0, only.

trim the fraction (0 to 0.5) of observations to be trimmed from each end of x before the mean 1s computed. Values
of trim outside that range are taken as the nearest endpoint.

na. I g logical value indicating whether N2 values should be stripped before the computation proceeds.
further arguments passed to or from other methods.

Value

If trim 1s zero (the default), the arithmetic mean of the values in x 1s computed, as a numeric or complex vector of

After a brief summary and the description of use, individual function parameters (arguments) are
listed, with their names. The names are important when you need to change the value of just one
particular parameter. So, if you want to change, say, how the missing (NA) values are handled by
mean, you can do so by calling it like mean(y, na.rm = TRUE). You will also note (for the first
parameter of mean) that the identity of unnamed parameters is deduced from their relative position
in the function call. Unnamed parameters must therefore appear only before the first named
parameter in a function call. Before you close the help window, scroll to its bottom. You will see
there an Examples section that shows you how to use the function. While this is probably redundant
information for such a simple function, you will find very useful to check the Examples section for
more advanced functions, e.g. those importing data or calculating cluster analysis. You can even
have these example commands executed, using function example, like example(mean).

Two more important points before you close this simple, but tiresome first session. Type the
following command:

>y <- 1+1

What has happened? | am sure you know the answer: the variable y has now value 2. But what has
happened to your vector of four numbers? Well, it is gone ®. You have asked to replace it with the
result of 1+1 expression and R did it, as you wished. This is all right, but imagine that y did not
contain four numbers, but say 1357 observations on 20 variables you have been collecting in the
past two years from your experiment. Why, oh why, you did not backup your data elsewhere?

This is, in fact, another Unix legacy, where attitude towards software users is different from the one
adopted by Windows software: here you are the boss, and when you ask for something, you know
what you are doing, aren’t you? You are not an idiot that needs to be constantly bothered with
popup dialogs saying “Existing data can be deleted. Do you really want to do what you asked to do?
[Yes] [No] [Cancel]”.

Next, type the following command:

> 90

Now, you get a dialog box, after all:

[Question l-‘&-]w

'e Save workspace image?

| Yes H No H Cancel]

But what the question actually means? First, | must tell you what function g does. Well, it quits
(closes) R program. As in the other Windows programs, you can use the File | Exit menu command,
but to be stylish (everything in R can be done with a function) or a snob, you can close R with the q
function. You should also note that the call to g does not contain any parameter; even so, you must
type the empty parenthesis after the function name, if you want to call it.

Now back to the workspace. It is a virtual storage place where the variables you have created during
your session with R (or during previous sessions, indeed) are stored. The variables y, mand v are
stored there and if you want to use them again the next time you open R, you must - at the end of
your session” - store it to a file on disc — and this is what the above dialog is all about. To learn a little
bit more about the workspace, abandon the program exit for a moment by clicking the Cancel
button, and type the following command:

> IsQO
[1] "m" v y

>Or earlier, using the File / Save workspace command.

This shows the variables present in your workspace (if this is not your first session with R, you will
probably see many more variables listed). If you want to remove variables that you no longer need,
you can do so using function rm (from remove):

> rm(m,Vv)
> 1sQ
[l] llyll

Again, no question is asked! You have requested m and VvV removal and they are gone now.

Finally, you can close the R program in peace (I hope).

Data Types and Data Import

So far the only type of R data you have seen was a vector. In fact, this is not a type at all, the real
type is a numeric vector, or a vector of logical values (TRUE, FALSE), or a vector of character strings
(e.g. labels). Vector is rather a particular type of data structure, in which the values of these basic
types can be stored. Vector requires all of its entries to be of the same type. There are many other
types of data structures, but | will mention here just two: list and data frame. A list is a hodge-podge
of various data structures, even with various data types. You might have a list containing a vector of
numbers, another vector of numbers with different length, a vector of character strings, or even
another list. You will be rarely creating lists yourself, but they are the most usual type of values
returned from more complex statistical functions, such as those computing ANOVA (aov) or linear
regression (Im). List nature allows these functions to put together any kind of information
representing things like function results or requested properties of the statistical model.

Data frame, on the other hand, is more regular in its contents. For a start, you can imagine that

a data frame is simply one, two or many vectors, each of the same length (i.e. with the same number
of entries), but not necessarily with the same data type. If you imagine these vectors as columns,
you can see the data frame as a regular 2D-table, where each row represents one observation and
each column represents one variable (in statistical sense, because whole data frame is one variable
in R). Beside numeric and character vectors (columns), you will sometimes put factors into data
frames. They are a special type of character vectors, with predefined set of possible values (factor
levels); they are used in ANOVA models and elsewhere. Each data frame column has a name (rows
can also have names), like the variables in Canoco 5 data tables have. If you have a data frame
called, say, exp .data with columns treatment and abundance, you can refer to individual
columns using frame name and column name, connected with dollar character:
exp.data$treatment. In addition, most statistical functions allow to move-out the data-frame
name to a parameter called data, so that you can then directly refer to individual columns. Here is
an example call performing one-way ANOVA:

aov(abundance~treatment, data=exp.data)

Obviously, data frame is an ideal type of structure for submitting your data to statistical procedures
(functions). Typically, you will start from an Excel spreadsheet table, import it to R as a data frame,
and pass it to chosen statistical function. Here | demonstrate one way of importing data into R —
copying them to Windows Clipboard and fetching them from there, using read .del im function.

You will be importing a single data table from an Excel file, providing data for Case Study 4 (Chapter
15) and named Seed|.xIsx. Open the file in Excel (or your favourite spreadsheet software) and select
the seedldesign worksheet.

Cia (= u',l. s Seedlxlsx - Microsoft Excel E‘M
_J Home || Insert | Page Layot | Formulas | Data | Review | View | Acrobat | @ - = X
20 g ||| Arial -0 - = % A |22 i

E=TN || IR T | B | @] - 48-

Pafte ¥ o [Av Al|gnvment NurTber St):les Cevlls .

Clipboard ™ Font El Editing

A2 v (| ¥

: A B & D E E |‘

2 treatment block seedlsum|

3 |rel1 Cont 1 95

4 |rel2 Litter 1 91

|| 5 |rel3 Nardus 1 64

6 |reld4 Li+Mo 1 107

7 |rels Cont 2 88

8 |relé Litter 2 70 |

9 |rel? Nardus 2 51 I

10 |rel8 Li+Mo 2 180

11 |rel9 Cont 3 44

12 |rel10 Litter 3 57

13 |rel11 Nardus 3 55

14 |rel12 Li+Mo 3 173

15 |rel13 Cont 4 94

16 |rel14 Litter 4 99

17 |rel15 Nardus 4 53

18 |rel16 Li+Mo 4 80

19 o

4 4 » M| Info - seedlspe | seedldesign ||[{] il | B |

Average: 4503125 Count:67 Sum: 1441 | |8 (O] (11| 200% s

% = 4

Select the area enclosing whole data table, including row and column labels, and copy it to the
Clipboard (e.g. using Ctrl-C combination of keys). You will note that the first variable (treatment)
contains level names and is clearly a factor, while the following two variables look like numeric data.
The block is, however, also a factor, only it does not look so in the spreadsheet.

Switch to R software and enter following command:

> seedlings <- read.delim("clipboard’”, row.names=1)

By calling the read . del im function, you ask for importing a TAB-delimited text “file” from the
Clipboard (instead of the special “
and placing it into variable seedl ings, which will be a data frame. The row. names parameter

specifies that the first imported column does not belong to data, but rather contains labels for

clipboard” word, you can specify path and name of a real text file)

individual observations (rows). The numbers present in imported Excel worksheet do not contain
fractional parts, but most data sets do and there you must take care if you happen to live in

a country where the dot character is not used as a decimal separator. In multiple European
countries, comma character is used as a decimal separator and in such a case, it is simplest to use
the read.del im2 function instead. You will now check whether the import succeeded. Like for
any other R variables, after you type the data frame name and press Enter, content of the variable
(here data frame) is printed:

> seedlings
treatment block seedlsum

rell Cont 1 95
rel2 Litter 1 91
rel3 Nardus 1 64
rel4 Li+Mo 1 107
rell5 Nardus 4 53
rell6 Li+Mo 4 80

Note, however, that this command would work not so nicely for a large data set. Anyway, the
content seems correct, doesn’t it? For this and other imported data frames, | recommend that you
always use the summary function:

> summary(seedlings)
treatment block seedlsum
Cont :4 Min. :1.00 Min. : 44.00
Li+Mo :4 1st Qu.:1.75 1st Qu.: 56.50
Litter:4 Median :2.50 Median : 84.00

Nardus:4 Mean :2.50 Mean - 87.56
3rd Qu.:3.25 3rd Qu.: 96.00
Max . :4.00 Max . :180.00

When you pass to summary function a data frame, it summarises separately each of its columns.
For factors (like treatment) it shows its (first few) levels and the number of times they occur in
the data. For numerical columns (like seed Isum, representing total count of plant seedlings in each
plot), it shows several statistical summaries: data range, lower and upper quartiles, median and
mean. But block is not a numeric variable, as | have already mentioned. The read .del im
function simply cannot work-out it should be a factor, given it has numeric values. So you must turn
it into a factor explicitly. The easiest way to do so is as follows:

> seedlings$block <- as.factor(seedlings$block)

When you do such an in-place change of data frame values, however, you should double-check you
have specified the names of data frame and column correctly. The R is unforgiving (as | have already
demonstrated): if you misspell column name at the left side, a new column with this name will be
created; if you misspell column name at the right side, you will probably lose the original data in
block. If you feel unsecure, make a copy of the seedlings data frame first (using <- operator),
modify it and verify the changes before copying new data back. In any case, always re-check whether
the data were changed correctly:

> summary(seedlings)

treatment block seedlsum
Cont :4 1:4 Min. : 44.00
Li+Mo :4 2:4 1st Qu.: 56.50
Litter:4 3:4 Median : 84.00
Nardus:4 4:4 Mean - 87.56
3rd Qu.: 96.00
Max . :180.00

Statistical Analyses

Here | will only briefly discuss how to use packages, as well as the functions implementing statistical
models. Some of these functions (such as for linear models, ANOVA, or generalized linear models)
are readily available and you do not need to specify any specific package for them, while others are
inaccessible until you open (and perhaps install first) their package.

Your task will be to fit and test a statistical model that compares the average number of seedlings
among four different experimental treatments, from an experiment described in Chapter 15. Here
you will abandon the classical linear model and use a generalized linear model (GLM) with the
number of seedlings fitted as a response variable with assumed Poisson distribution. Generalized
linear models can be fitted in R using function gIm. As you will need to work further with the fitted
model, you will store the value returned by gIm in a variable. There are no strict rules how to name
such variables, but you should develop some strategy to keep your R workspace tidy. Here,
foreseeing | will not fit so many models for this dataset, | suggest to keep things simple:

> glm.seedl<-gIm(seedlsum~block+treatment,data=seedlings, family=poisson)

The first parameter of function gIm is so-called model formula. For this and similar models, it starts
with the name of response variable, followed by a tilde character (~) separating the list of predictors,
and then the specification of model predictors. Here | use the other two variables of the data frame
and specify the frame name using data parameter. Although not appropriate for this example (with
no treatment replicates within each block), in other data sets you often need to specify, beside main
effects, an interaction between two factors (say A and B). This can be done in the model formula
either as Y~A+B+A:B or, more simply, as Y~A*B. If the effect of factor B is nested in factor A, this
can be described in the model formula as Y~A/B.

The fami ly parameter specifies the assumed distribution for the stochastic component of the
model and it can be also used to specify the link function, if not using the default one.

Now you need to obtain model summary. For this, type the following command:

> summary(glm.seedl)

Call:

glm(formula = seedlsum ~ block + treatment, family = poisson,
data = seedlings)

Deviance Residuals:
Min 10 Median 30 Max
-4.3665 -2.0216 0.2572 1.6040 3.8844

Coefficients:

Estimate Std. Error z value Pr(c|zl|)
(Intercept) 4.40424 0.07213 61.060 < 2e-16 ***
block2 0.08584 0.07329 1.171 0.242
block3 -0.08168 0.07642 -1.069 0.285
block4 -0.09084 0.07661 -1.186 0.236

treatmentLi+Mo 0.52013 0.07048 7.380 1.58e-13 **=*
treatmentLitter -0.01254 0.07918 -0.158 0.874

10

treatmentNardus -0.36427 0.08718 -4.179 2.93e-05 ***

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 < ~ 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 244.02 on 15 degrees of freedom
Residual deviance: 89.75 on 9 degrees of freedom

AlIC: 203.42

Number of Fisher Scoring iterations: 4

It looks as if you have used the same function summary as before (for the seedl data frame), yet
with a completely different outcome. But this is not so — summary is a polymorphic function that is
specialised for different types of data specified as its first parameter. For a data frame, a function
called summary.data. frame is called, but here the summary . glm function is used. Similar
versatility can be found also with other functions, most notable is the function plot.

You have started with the function summary, although it does not provide the most concise
summarisation of the effect of the two predictors. But it helps to detect so-called overdispersion,
which is indeed present in our model: comparing the size of Residual deviance (89.75) with the
number of Residual ... degrees of freedom (9) suggests that the residual variation is much larger than
one would expect for a Poisson distribution.® So you will refit the model, specifying somewhat
different distribution family, called quasi-Poisson:

> gIm.seedl2 <- update(gIm.seedl, family=quasipoisson)

This command illustrates another commonly used pattern of work with statistical models in R.
Instead of specifying a new call to g Im, which would - beyond modifying the fami 'y parameter -
repeat all the function parameters, you request here an update of an existing model, specifying only
the changed parameter(s). The update function is frequently used to gradually develop a model
through its formula (i.e. the first parameter of the function gIm). Imagine you would have another
explanatory variable - say moisture - in the seedl data frame and you would like to add it to the
model. To do so, you call the update function in the following way: ... update(gIm.seedl2,
.~. + moisture). Because you change the first parameter of gIm, you do not need to name
the parameter (but you can alternatively use its name, i.e. formula=_.~_.+moisture). The dot at
the left / right side of the tilde character means “response / predictor variable(s) as in the original
model”, while the + moisture part represents the addition of a new predictor. Similarly,
predictors can be taken out of an earlier model by preceding them with the — character.

Next you will perform correct test” for each of the two used parameters (output simplified):

®The overdispersion is briefly discussed in Section 8.3 of our book, but a detailed discussion of the dispersion
parameter and how to detect an overdispersion is beyond the scope of both our book and of this tutorial.

I simply do not want to present an incorrectly performed analysis, so | refer you here to more advanced
textbooks about the use of generalized linear models.

’ For GLMs with Poisson distribution, xz test statistic is normally used, but in the case of overdispersion, the
F statistic is more appropriate.

11

> anova(glm.seedl2, test="F")
Analysis of Deviance Table
Model : quasipoisson, link: log
Response: seedlsum

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev F Pr(crF)
NULL 15 244 .03
block 3 7.302 12 236.72 0.2514 0.85843
treatment 3 146.973 9 89.75 5.0601 0.02524 *

As with the ANOVA model presented in Chapter 8, the effect of block is not significant, while
treatment has a significant (and here somewhat stronger) effect (F34=5.06, p=0.0252).

Finally, you will reproduce the multiple-comparison tests for our fitted GLM and treatment factor.
The functions you will use (glht, as well as a specialised version of summary) are stored in

a separate package called multcomp. You must first open it with a call to 1 i1brary function. When
you stop using a package, it is recommended to close it using function detach (the call used below
closes the last opened package).

> summary(glht(glm.seedl2, linfct=mcp(treatment="Tukey')))
Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts

Fit: gIm(formula = seedlsum ~ block + treatment,
family = quasipoisson, data = seedl)

Linear Hypotheses:
Estimate Std. Error z value Pr(>|z])

Li+Mo - Cont == 0.52013 -21930 2.372 0.08141 .
Litter - Cont == -0.01254 .24638 -0.051 0.99995
Nardus - Cont == -0.36427 .27125 -1.343 0.53263

Litter - Li+Mo == 0 -0.53267
Nardus - Li+Mo == 0 -0.88440
Nardus - Litter == -0.35173

Signif. codes: 0 “***” 0.001 “*** 0.01 “** 0.05 “.7 0.1 * ~ 1
(Adjusted p values reported -- single-step method)

> detach()

.22016 -2.419 0.07237 .
.24768 -3.571 0.00196 **
.27195 -1.293 0.56437

ool eolNolNoNe

Note another common pattern in the function call: as you will use the value, returned by function
glht, just once, you do not store it in a variable, but rather you nest the call to glht within a call
to summary, so that the latter function receives it as its first parameter.

So, this is the end of my brief introduction to R. | wish you lot of patience while learning it and | hope
your statistical analyses will be empowered by the choice of this system.

12

